

Address 13 Patrick Road Jetpark, Boksburg, Johannesburg

MV Vertical Slurry Pump

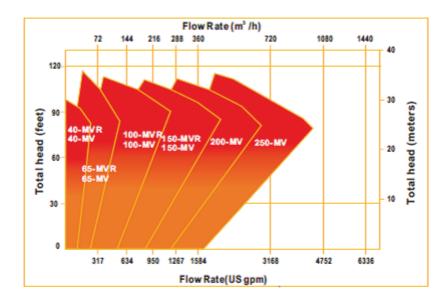
The MV/MVR heavy duty pump is designed for applications requiring greater reliability and durability. The bearing assembly allows the jump to operate in the "snore" condition without damage to the bearings. It is designed for handeling abrasive slurries and corrosive fluids by using either elsatomer or alloy lined wet ends components. The pump is suitable for mining, chemical treatment, waste water treatment, gravel and general process application.

Typical Application

Mill Discharge
Coarse Sand
Tailings
Mineral Concentration
Heavy Media
Coal Washing
Chemical Processing
Effluent Handling
FGD
Waste Water

Pump Designation

100 RV MV(R)

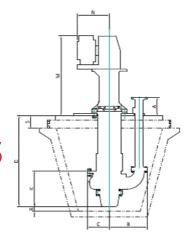


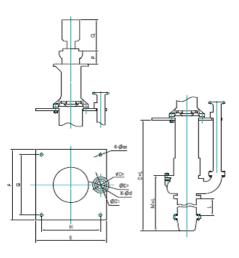
MV-Metal lined vertical slurry pump MVR-Rubber lined vertical slurry pump

Bearing Assembly Model

Discharge Diameter (mm)

MV Pump Quick Selection Chart


Pump Range


Discharge Size: 40 to 250mm Capacity: 17 to 1000m3/h

Head: 4 to 40 m

Outline Dimensions

Pump Features

Wide range of hard metal or rubber wet parts to ensure longer service life

Double suction semi-open impeller, effectively reduces the axial load

No subermeged bearing avoids the need for gland or bearing flushing water

Suction pipe or agitator available, which can be used for pumping the high density slurries under the pit

MVR models feature full rubber covering for corrosion resistance

Can be run in insufficient suction duties

The screened inlets and large impeller passages reduce the risk of blockages

Material Options

Pump Size	A	В	С	D	E	F	G	н	1	Φn	к	Key Size	Note	N dimen motor	ision c	Q hange	Weight (KG)	Š		harge ΦD2		
	137			900*	500	500	450	450	205	18	174	12×8	1113	675	248	629	285 250	280	127	40	98	4-Ф1
40PV-MVR		265	1/5	1200									1113				250					
65 QV-MV	224	374	234	900									1390				432					
65 QV-MVR	230	380	260	1200° 1500	680	680	620	620	285	19	265	14×9	1396	794	290	681	381	350	178	65	140	4-@19
100RV-MV			311	1200	1000				929 400	0 22	393	22×14			0 416 960		867				191	8- Φ 19
		435		1500*																		
	261			1800									1803					350 2	229			
				2000		870	800	929								960				104		
				2400			000															
				1200																		
100RV-MVR	266	535	332	1500*									1809				743					
				1800																		
150SV-MV	395	670	400	1500									2186				1737					
150SV-MVR	395	670	400	1800*	1100	1100	1030	1030	500	28	475	28×16	2194		476	1011	1523	350	280	150	241	8- Q 2
13031 111 111	333	0,0	400	2100													2323	_				
				1500																		
200SV-MV	461	805	441	1800* 2100	1300	1200	1100	1200	600	28	550	28×16	2191	1300	4/6	1011	3090	350	545	200	298	8- Q 2
				1800																		
250TV-MV	494	903	490	2100*	1750	1450	1350	1650	700	48	685	28×16	2572	1750	561	1246	4090	400	406	250	362	12- 0
				2400																		
						-																

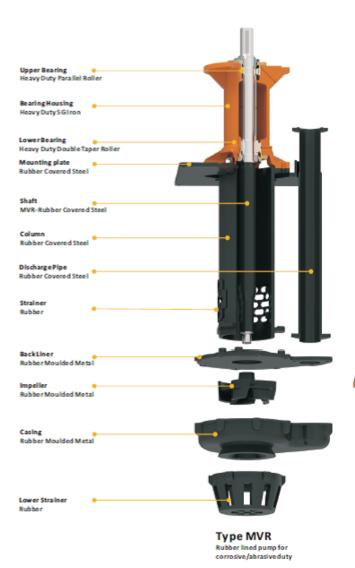
A major advantage of the slurry pump is the number of optional materials available. This enables a pump to be constructed with the most appropriate materials specifically to meet duty requirements

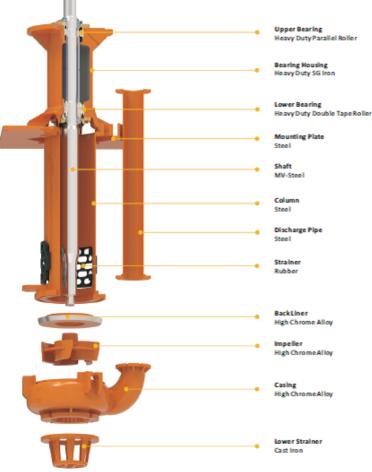
Note: All the dimensions are in millimeter (mm)

means the standard pump length.

size includes: 0, 300, 600, 900, 1200, 1800 mm, when L=0 mm, the pump is standard length.

R dimension range: 300 - 500 mm.


Material Code	Hardness (HRC)	Impact Toughness (J/cm2)	Application	Standards
M05	≥58	5~7	Alloy MOS is particularly suited for greater impact load and fair corrosion resistance, and it is used when pH range is S-12.	ASTM AS32 CL III-A
M07	≥58	5~7	Alloy M07 has lower wear resistance but higher impact resistance than Alloy M05. It is used when pH range is 5-12.	ASTM A532 CL III-A
M49	35~45	5~7	Alloy M49 has certain ension resistance and better corrosion and abrasion resistance, which is used in mild add application with pH =4, particularly suitable for Flu Gas Desulphurization (FGD) applications.	
м33	30~40	5~7	Alloy M33 excels in ension resistance and corosion resistance, which can be used in oxidizing medium with pH =1, such as delivery of phosphogypsum and nitric acid, sulfuric acid and phosphoric acid, etc.	
M12	60~67	2″5	Alloy M12 has better wear resistance than Alloy M05, but it is not best suited for corrosion application. It can be selected when pH ranges of 6-14, where Alloy M05 provides fair wear life.	
M61	60~67	5~6	Alloy M61 has better toughness compared to Alloy M12. Aloy M61 can be further hardened by adjusting heat treatment, thereby improve its wear resistance. It is suitable for high abrasive slurry with fine particles with pH ranges of 614.	



Material Code	Material Name	Description and Application						
MOSR	Natural Rubber	M08R is a back natural rubber, low to medium harness generally used for impellers, and is required in fine particle slurries.						
M26R	Natural Rubber	M26R is soft natural rubber, normally used for liners, and is required in fine particle slurries applications.						
M33R	Natural Rubber	M33R is a premium grade material for use where M26R does not provide sufficient wear life.						
M38R	Natural Rubber	M38R is a black natural rubber, of medium hardness, M38R is used for impellers where superior erosive is required in find particle slurries.						
M55R	Natural Rubber	M55R is a premium grade material for use in a high wear application. Superior physical properties give increased cut resistance to hard, sharp particle slurries.						
M02S	EPDM Elastomer	M02S is an acid resistant rubber which is of medium abrasion resistance.						
M125	Nitrile Elastomer	M12S is synthetic elastomer which is generally used in low abrasion/erosion application. It provides excellent resistance to oils, fats and waxes.						
M21S	Butyl Rubber	M21S exhibits excellent chemical stability and good resistance to heat and oxidation. It is generally used in acidic applications.						
M31S	Hypalon	M31S exhibits an excellent balance of chemical resistance to both hydrocarbons and acids.						
M42S	Neoprene	M42S provides improved resistance to temperature, we ather and o zone attack. It has excellent oil resistance.						
M51S	Fluoroelastomer	M51S has exceptional resistance to oils and chemicals at elevated temperature. Limited erosion resistance.						

Pump Structures

Type MV Metal lined pump for a brasive duty